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* CASPER Crypto/FFT engine

* One CAN-FD with dedicated DMA controller

» Five general-purpose timers, one SCTimer/PWM, one RTC/alarm timer
* One 24-bit Multi-Rate Timer (MRT)

* A Windowed Watchdog Timer (WWDT)

» Nine flexible serial communication peripherals (which can be configured as a USART, SPI, high speed SPI, 12C, or I12S
interface)

* Programmable Logic Unit (PLU)
* One 16-bit 2.0 Msamples/sec ADC, comparator, and temperature sensor

The Cortex-M33 offers 18.2% performance increase in the same process technology compared to the high embedded
performance bars already established by Cortex-M4 processors, while improving power efficiency. Cortex-M33 official CoreMark
is 4.02 CoreMark/MHz, and Cortex-M4 official CoreMark is 3.40 CoreMark/MHz.

This application note describes how to port CoreMark code to LPC55S0x/LPC550x, which involves setting up software and
hardware including memory partitioning, compiler setting, and board setup. It also describes how to measure CoreMark scores
on the Cortex-M33 and the result including CoreMark scores and power consumption in yJA/MHz. Separate CoreMark projects for
different software development tools (Keil MDK, IAR EWARM, and MCUXpresso IDE) are also included here for reference.

2 Integration of CoreMark library to SDK 2.8 framework

The software package associated with this application note contains SDK 2.8 based project framework that allows developers to
drop in the CoreMark library sources and quickly get up and running with benchmarking the LPC55S0x/LPC550x. To get started,
go to: https://www.eembc.org/coremark. Click the "Download" link as shown in the following figure and follow the instructions on
that page.
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Figure 1. EEMBC CoreMark download link

After reviewing the license terms, look through the readme and documentation file. The readme gives step by step instructions on
unpacking and building the distribution. This also helps with getting familiar with the CoreMark terminology used throughout the
application note.

2.1 Porting CoreMark library into CoreMark framework

There are four variants of CoreMark projects in this application note for each IDE. The four variants execute the CoreMark
application from internal flash and other variants execute the CoreMark application from internal SRAMX.

The various CoreMark projects are:
1. coremark_score_on_flash — executes CoreMark application from internal Flash.
2. coremark_score_on_sramx — executes CoreMark application from internal RAM.
3. coremark_uAMHz_on_flash — measures current when Coremark is executed on Flash.
4. coremark_uAMHz_on_sramx — measures current when Coremark is executed on RAM.
The CoreMark projects are found in the following locations:
« Keil MDK IDE:
Ipc55s0x_coremark_mdk\ Ipc55s0x_coremark_mdk.uvprojx
* IAR Workbench IDE:
Ipc55s0x_coremark_iar\ Ipc55s0x_coremark_iar.eww
Each of execute settings has three frequency settings : 12 MHz (FRO), 48 MHz (FRO), and 96 MHz (FRO).
Depending on the toolchain, the workspace should look like as shown in the figures in the following sections. The CoreMark
framework requires the addition of the CoreMark files from EEMBC.
2.1.1 Coremark framework for Keil MDK/IAR EWARM/MCUXpresso IDE

The Ipc55s0x_coremark_xxx project must be set as active before the CoreMark source code files can be added.
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Figure 3. IAR EWARM workspace
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° Ipc55s1x_coremark_iar - IAR Embedded Workbench IDE - Arm 8.40.2
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. Ipc55s1x_coremark_mcux - Ipc55s1
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Hinlh g [® > & v & 2

& Project ... % % Periphe... i Registe
=1
~ % Ipc55s1x_coremark_mcux <lpe5t
© Project Settings
# Binaries
@ Includes
= CMSIS
& board
2 device
& drivers
# libs
& source
& startup
&= Ipc5551x_coremark_score_on.
& |pc55s1x_coremark_score_on,
& Ipc55s1x_coremark uAMHz ¢
= |pc55s1x_coremark_ uAMHz ¢
v = doc
E readme.txt

<

U Quickstart Panel & - Variables

5 MCUXpresso IDE - Qu
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~ Create or import a project
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7l B | port SDK examolels).
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Open in New Window
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Build Targets
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Figure 4. MCUXpresso project configuration select

Ctrl+C
Ctrl+V
Delete

>

F2

F5

E
Help
P!@'!.ﬁ!ﬁl%‘%#‘ﬁVQVEQ«:" B nig v v o
= " =8 mw
1oTal score Average score
»  12MHz 32.582311 2.715 here i I
, 96MHz 203.603787 2.128 There is
, 168MHz 212.096575 2.120 no active
» 158MHz 260.002889 1.733 editor
» 12MHz 33.893709 2.824 that
» 96MHz 271.782214 2.839 provides
s 1@eMHz 283.032219 2.830 an
s 15@MHz 424 .588385 2.830 outline.
consumption data :
Total Current Average Current

s  12MHz 1.12mA 93.33uA/MHz
s 96MHz 3.28mA 33.40uA/MHz
5 18eMHz 3.60mA 36.08uA/MHz
5 156MHz 4.90mA 32.78uA/MHz
s 12MHz 0.97mA 80.90uA/MHz
. 96MHz 2.B5mA 29.78uA/MHz
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Copy the following files from the CoreMark package downloaded from EEMBC.

» core_list_join.c
* core_main.c

* core_matrix.c
» core_state.c

» core_util.c

* coremark.h
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= barebones 2018/9/28 1717 File folder
2. cygwin 2018/9/28 17:17 File folder
=2 docs 2018/9/28 1717 File folder
2. linux 2018/9/28 17:17 File folder
2 linux6d 2018/9/28 1717 File folder
2. simple 2018/9/28 17:17 File folder
& core_list_join.c 2018/5/31 10:42 C File

= core_main.c 2018/5/31 10:42 C

= core_matrix.c 2018/5/31 10:42 C

= core_state.c 2018/5/31 10:42 C File

=1 core_util.c 2018/5/31 10:42 C File

= coremark.h 2018/5/31 10:42 C Header Source F..

@ LICENSE.md 2018/5/31 10:42 Markdown Source ... 19 KB
2 | Makefile 2018/5/31 10:42 File 4 KB
@ README.md 2018/5/31 10:42 Markdown Source ... 19 KB

Figure 5. CoreMark files

» For Keil MDK, place these files in the project directory:

1pc55s0x_coremark mdk\source

» For IAR Embedded Workbench, place these files in the project directory:

1pc55s0x coremark iar\source

» For MCUXpresso place these files in the project directory

1pc55s0x_coremark mcux\source
The files ee_printf.c, core portme.c,and core portme.h (underthe port 1pc5500 folder) need to be copied to the following
folder locations.
* For Keil IDE, place the files in 1pc55s0x_coremark mdk\source\port 1lpc5500.
Add the files into the Keil MDK project framework to the respective group source by double-clicking on the groups.
» For IAR Embedded workbench, place the files in 1pc55s0x coremark iar\source\port 1pc5500.
Add the files into the IAR project framework to the respective group source by double-clicking on the groups.
* For MCUXpresso, place the files in 1pc55s0x_coremark mcux\source\port 1pc5500.

Add the files into the MCUXpresso project framework to the respective group source by clicking "refresh".
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Figure 6. Adding files in Keil MDK
For KEIL MDK project, right-click the source folder and select "Add", and then select "Add Files...".
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Figure 7. Adding files in IAR EWARM workspace
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For IAR Embedded workbench right click the source folder and select "Add", and then select "Add Files...".
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Figure 8. Adding files in MCUXpresso workspace

For MCUXpresso project, copy the files into the "source" folder, and then click "refresh”. The files will be added in the

project automatically.

Use the core portme.c and core portme.h files provided with the application note and not the one from the EEMBC CoreMark

package. For convenience, these files have the required porting changes ready for use.

Copy these files to the source folder for all three tool chains and add the core portme.c file in the project framework under the

source group.
A few files need to be modified to support CoreMark and are described below.

In the project scatter file, change the stack size to 0x1000.

0x1000;
0x1000;

define symbol  size cstack =
define symbol  size heap =

To add the path to the header files used in the project, in Keil MDK under Project -> Options -> C/C++(ACB6), click "Include path”

and add the following paths that contain the header files.
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Figure 9. Keil MDK compiler include path

In IAR under Project -> Options-> C/C++ Compiler, click "Preprocessor" and add the following paths that contain the header files.
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Options for node “lpc55s1x_coremark_iar X
Category: Factom Settings
General Options _ I Multi-file Compilation
Static Analysis Discard Unused Publics
Runtime Checking

C/C++ Compiler MISRA-C:1998 Encodings Extra Options
Assembler Language 1 Language 2 Code Optimizations Output
Output Converter List Preprocessor Diagnostics MISRA-C:2004
Custom Build
Build Actions [_] Ignore standard include directories
Linker Additional include directories: (one per line)
Debugger
: $PROJ_DIR$/CMSIS A
Simulator $PROJ_DIR$/device
CADI $PROJ_DIR$/drivers
CMSIS DAP ertetistertt b it S e
GDB Server | |$PROJ_DIRS\source\port_Ipc5500 v
I-jet Preinclude file:
J-Link/J-Trace |
TI Stellaris
Nu-Link Defined symbols: (one per line) _
PE micro DEBUG [] Preprocessor output to file
ST-LINK CPU_LPC55S16JBD100 Preserve comments
. . RUN_ON_FLASH - iracti
Third-Party Driver —N_ Generate #line directives
COREMARK_SCORE_TEST
TI MSP-FET — —
TI XDS

]9 Cancel

Figure 10. IAR EWARM compiler include paths

The CoreMark files are successfully ported into the CoreMark project framework.

In MCUXpresso under Properties for xxxx -> C/C++ Build -> Settings, click "Includes" and add the following paths that contain the

header files.
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l . Properties for lpc55s1x_coremark_mcux X
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‘C++ Build Configuration: |lpc55s1x_coremark_score_on_flash [ Active ] ~ || Manage Configurations...

Build Variables

Environment

Logging

MCU settings

Settings

Tool Chain Editor
'C++ General
CUXpresso Config To
oject Natures
oject References
in/Debug Settings
sk Tags
ilidation

® Tool Settings .# Build steps Build Artifact & Binary Parsers © Error Parsers

~ ® MCU C Compiler lncladomathe 1)

(2 Dialect

"${workspace_loc;/${ProjName}/source/port_lpc5500}"

“¢I\-Ma 1 -I¢IW WISk

(2 Preprocessor
2 Includes
 Optimization
& Debugging

"${workspace_loc:/${ProjName)/source}”
"${workspace_loc/${ProjName}/}"

"${workspace_loc;/${ProjName}/drivers}”
"${workspace_loc/${ProjName}/device}"

& Warnings "${workspace_loc;/${ProjName}/CMSIS}"

(2 Miscellaneous

2 Architecture

& TrustZone
~ & MCU Assembler

(2 General

(& Architecture & Headers
~ B MCU Linker

aa 85k

2 General 5 .
&= Include files (-include)

AR = RNy

2 Libraries

& Miscellaneous

(% Shared Library Settings
& Architecture

2 Managed Linker Script
2 Multicore
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Figure 11. MCUXpresso compiler include paths

The CoreMark files are successfully ported into the CoreMark project framework.

2.1.2 CoreMark framework to execute from internal SRAM

The project Ipc55s0x_coremark_xxx_on_sramx executes the CoreMark application from the 16 KB SRAMX memory region.

The files core list join.c, core main.c, core matrix.c, core state.c, and core util.c are relocated to execute from
SRAMX using the linker scripts.

For Keil MDK, the linker script is located at:

.\1pc55s0x_coremark mdk\LPC55S06_coremark score_sramx.scf

The following figure shows the linker script setting for the Ipc55s0x_coremark_xxx_on_sramx project.
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Device | Target | Output | Listing

E Options for Target 'coremark_Score_on_flash

| User | C/Cro ACH)| Aam  Liker | Debug | Uttis|

[~ Dont Search Standard Libraries
[V Report ‘might fail' Conditions as Emors

I [~ Use Memory Layout from Target Dialog I ¥/0 Base: I
[~ Make RW Sections Position Independent R/O Base: I{h{)ﬁm{){m
[~ Make RO Sections Posttion Independent - Imm

X

disable Wamings: [6314

Scatte [\[PC55516_coremark_score_flash scf =) Ea. |

Misc Omax —info sizes

-map —cpu=Cortex-M33 -fpu=FPv5-SP

Linker |-cpu=Cortex-M33

control  |-library_type=microlib ~diag_suppress 6314 -strict —scatter " \LPC55516_coremark_score_flash scf"

-scatter "./RTE/Device/LPC55516JBD100/LPC55516_flash.scf" “.0 A

W

OK Cancel Defaults Help |

Figure 12. Linker script in Keil IDE

For IAR EWARM IDE to execute CoreMark in Internal SRAM, to place Coremark operation codes into RAM section, add the
following line of code in the . ict file, as shown in the following figure.
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initialize by copy [ readwrite, section .textrw };
do not initialize | section .noinit };

if (isdefinedsymbol{ USE_DLIE PERTHREAD))

{
/* Bequired in a multi-threaded applicaticn */

initialize by copy with packing = none [ section _ |

}

DLIB_FERTHREERD }1:

place at address mem: m interrupts_start { readonly secticn .intwvec };
place in TEXT_ region { readonly };

place in DATR regicn { block BW }:

place in DATR region { block ZI };

place in DATR regicn { last block HEAF };

place in XCODE_region section .critical code };

initialize by copy section .critical code };

place in XCODE_region object core portme.o,
cbject core_main.o,
object core_liat_join.o,
cbject core matrix.o,
object core state.o,
cbject core_util.o,

b
initialize by copy { cbject
object
cbject
object
cbject
object
}:

core portme.o,
coOre_main.o,
core_list join.o,
core_matrix.o,
core_state.g,
core_util.o,

Figure 13. IAR EWARM allocating Code to SRAM area

For MCUXpresso to execute CoreMark in Internal SRAM, selecte the linker file as "LPC55S06_coremark_score_sramx.ld" in
"Managed Linker script", as shown in the following figure.
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Figure 14. MCUXpresso allocating Code to SRAM area

Input section description Region Section Type

2.2 Optimizing the CoreMark framework

There are many factors that affect the CoreMark and pA/MHz score that can be optimized. Some of these factors are IDE
dependent optimizations, while others leverage the MCU architecture for better performance. The goal is to be able to produce
the best scores from all these IDEs. It is important to understand that these IDEs are constantly changing and a different version
of a given IDE may add or remove features that may make these optimizations obsolete or ineffective. The following are the IDE
versions that are applicable to this application note:

* Keil MDK v5.28
* IAR EWARM 8.50.6
* MCUXpresso 11.2.1

2.2.1 Memory considerations

Due to the inherent architecture of SRAM and flash, CoreMark executes faster when running out of SRAM. The LPC55S0x/
LPC550x internal memory uses a multilayer AHB matrix system that provides a separate instruction and data bus for Cortex-M33
and SRAMX bank. See the following figure. SRAMO to SRAM2 are on the system bus. Placing the CoreMark code and data in
different SRAM banks minimizes bus contention and improves instruction and data parallelism.

Itis important to minimize the flash wait states according to the MCU frequency to optimize the CoreMark score. In contrast, when
performing the yA/MHz test, it is possible to save power by disabling the flash’s prefetch ability. The LPC55S0x/LPC550x user
manual contains more information on correctly configuring the flash memory, such as the minimum amount of wait states allowed
at a given core frequency.
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The provided CoreMark framework projects include separate SRAM and flash-based projects that implement various
memory optimizations.

Serial Wire JTAG CAN
Debug boundary scan interface CRYSTAL CLKIN CLKOUT VDD RST_n
A ¢ 1 T 1 | ]TN\-[ |
L 4 Y L ’I_tl
FPU [MPU| 25, ! Clocks, PoR
OprOCESS0r INterace wi Power control, BoD
math function : cAN | |Hash- DC-DC Converter, RO
A 8 DMAQ| [DMA1 D AES LDOs, .
Cortex-M33 2 system functions PLL
T ]
[&]
Flash Flash
i - L 3 T RNCE] interface [ 256 kB
: i L rom
i i SRAMX
! | 16 KB
i i 16 KB SRAD
i ! 16 KB
i i SRAM3
' r Femmemmmmmm——————————— 4 16 KB
' | =
Figure 15. LPC55S0x/LPC550x AHB matrix

In both the SRAM and flash projects, there is a COREMARK sCORE_TEST macro defined in core portme.h that indicates whether
the project is configured to execute the CoreMark benchmark or the yA/MHz test. If this macro is defined, the CoreMark score test
will run. If this macro is commented out, the yA/MHz test will run. Use this macro to switch between the two benchmarks cases.

2.2.2 |DE optimization settings

The following optimizations are compiler-based and therefore IDE-dependent. These optimizations apply to both the SRAM and
flash based projects.

2.2.21 Keil optimizations

There are two compiler optimizations that can be done to improve the CoreMark score. In each Coremark source code files'
Options and under the C/C++(ACB) tab, the optimization level needs to be set to "-mcpu=Cortex-m33 --target=arm-arm-none-eabi
-Omax -g -mthumb -mfpu=fpv5-sp-d16 -mfloat-abi=hard -fno-common -ffp-mode=fast" in Misc Ctonrols.
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Figure 16. Keil MDK CoreMark score optimization

When benchmarking the power consumption of the MCU, the optimization setting must be set to "Level 0 (-O0)" and "Optimized
for time" must be unchecked.

Device | Target | Output | Listing | User  C/C++(ACE) | Asm | Linker | Debug | Lities |

Preprocessor Symbols
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Undefine: |
[ Execute-only Code Wamings: |ACS4ke Wamings v Language C: |c99 -
Optimization: [-00 «| I~ Tum Wamings into Emors anguage Cos: [cosll |
I Link-Time Optimization [™ Plain Charis Signed I~ Short enums /wchar
[~ Spit Load and Store Mukiple ™ Read-Only Postion Independent I useRTTI
¥ One ELF Section per Function I™ Read-Wiite Postion Independent [~ No Auto Includes
hg;f |board:source CMSIS device doc:divers src:startup: \source \port_lpc5500 J
s
Misc
Cortrols
Compiler  [xc std=c39 -target: abi mcp 33 mipu=fpv5spd16 mfloat-abizhard < A
m fno-tii funsigned-char
v

0K Cancel Defaults Help !

Figure 17. Keil MDK pA/MHz optimization

2.2.2.2 1AR optimization

There are two compiler optimizations that can be done to improve the CoreMark score. Set the optimization level to “High”, select
“Speed” from the drop down menu and check the “No size constraints” checkbox.
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Figure 18. IAR EWARM CoreMark score optimization

When benchmarking the power consumption of the MCU, the optimization level should be set to “None”.
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Figure 19. IAR EWARM pA/MHz optimization

2.2.2.3 MCUXpresso optimization

There are two compiler optimizations that can be done to improve the CoreMark score.Tto set the optimization level to "-O3", select

"Optimize most(-03)" from the drop-down menu.
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Figure 20. MCUXpresso CoreMark score optimization

When benchmarking the power consumption of the MCU, the optimization level should be set to "None(-O0)".
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Figure 21. MCUXpresso JA/MHz optimization

3 Measuring CoreMark on board

3.1 LPC55S06Xpresso board

The LPC55S06Xpresso board supports a VCOM serial port connection through J1. To observe debug messages from the board,
set the terminal program to the appropriate COM port and use the setting ‘115200-8-N-1-none’. To make the debug messages
easier to read, set the new line receive setting to auto.

3.2 Board setup
The LPC55S06-EVK Rev. A1 development board is used for benchmarking.
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Figure 22. LPC55S06-EVK Development Board
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The board ships with CMSIS-DAP debug firmware programmed. For more information on the CMSIS_DAP debug firmware, see
the following FAQs:

https://www.nxp.com/downloads/en/software/lpc_driver_setup.exe

For debugging and terminal debug messages, connect a USB cable to the P6 USB connector. Board schematics are available
on Www.nxp.com.

3.2.1 pA/MHz measurement setup
To measure the LPC55S0x/LPC550x power consumption, connect the ammeter across JP22, as shown in the following figure.
NOTE

» Users must remove the jumper on JP20, JP21, and JP22, and connect JP20/21/P22 pin2 together. Then use
multi-meter to measure the current between JP20/21/22’s pin1 to All JP20/21/22’s pin2.

» The current data on EVK maybe little higher than datasheet, because the EVK have more other components
that may cost more power.

mA

10A

MAX
1— FUSED %?E
FUSEE ¥
j rnm

Figure 23. yA/MHz measurement setup

Users can measure the current by multimeter.
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When performing the pA/MHz benchmark, use a J2 USB connector to provide power to the board. Additionally, after the
WA/MHz benchmark project has been downloaded, the power cycles the board by removing the USB cable and reinserting. It is
recommended to make sure that the debug probe is not connected.

The core clock frequency can be changed by selecting different configurations through the shell terminal by MCU UARTO.

3.3 Running CoreMark code
To obtain the CoreMark result, perform the following steps:

1. Connectthe board’s connector J1 with PC. Then, the PC will recognize the LPC-Link2 debugger with a Simulate Serial Port,
as shown in the following figure.

If the PC cannot find the serial port driver, download the LPCScrypt from the following link and install it
on your PC. https://www.nxp.com/support/developer-resources/software-development-tools/Ipc-developer-resources-/
Ipc-microcontroller-utilities/Ipcscrypt-v2.0.0:LPCSCRYPT ?tab=Design_Tools_Tab

=4 Device Manager . _ = B X

File Action View Help
@ | = E HE & E RS

> -Bal Monitors ‘
4 IE¥F Network adapters

------ '_-'." Bluetooth Device (Personal Area Network) #2

------ '_-'." Bluetooth Device (RFCOMM Protocol TDI) #2

------ L¥ Intel(R) Dual Band Wireless-AC 8260

------ ¥ Intel(R) Ethernet Connection [219-LM

------ L¥ Juniper Networks Virtual Adapter Manager
------ '-_:_'; Microsoft Virtual WiFi Miniport Adapter

------ '_-'." VirtualBox Host-Only Ethernet Adapter
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> E Proximity Devices

> g Smart card readers

> -f-:.E}‘i" Sound, video and game controllers

> -\l System devices

b - H Universal Serial Bus controllers

m

Figure 24. LPC-Linkll UCom port

2. Open a UART debug terminal (such as Tera Term, putty, etc.) and configure the settings as 115200, 8 data bits, no parity,
1 stop bit, as shown in the following figure.
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Figure 25. UART debug terminal configuration

3. Once the CoreMark necessary files are added into the project (by following the instructions in Chapter 2.1), compile the
project and download it to the LPC55S06-EVK board.

4. Click the "Reset" button. The terminal displays the prompt information, as shown in the following figure. Users can input "1",
"2", or "3" from the PC keyboard to select the Core frequency like FRO 12 MHz, FRO 96 MHz, PLL 96 MHz once input a
character. The Coremark test program starts immediately. Then, wait for 10 senconds or more. The CoreMark benchmark
is displayed on the terminal after a few seconds, as shown in the following figure in Chapter 4.
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T COM24 - Tera Term VT O >
File Edit Setup Control Window Help

LPC5550x CoreMark Test Program Start
Please Select Core Fregency first by input 1/2/3

Figure 26. Coremark Test Core Frequency Choose menu

4 Result

The following figure shows the CoreMark benchmark result when running LPC55S0x/LPC550x at 96 MHz core frequency in IAR.

The CoreMark benchmark score is the number of iterations per second. The CoreMark/MHz score executing from internal flash
for this run is 390.52/96 MHz = 4.06CoreMark/MHz.
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Figure 27. CoreMark result

The following table shows the typical CoreMark score when benchmarked on Keil MDK, IAR EWARM, and MCUXpresso IDE
when running from the internal flash and SRAM when using FRO 12 MHz as the core clock resource.

Table 1. LPC55S06-EVK board CoreMark/MHz score when using FRO 12 MHz

IDE CoreMark/MHz Score (SRAMX) CoreMark/MHz Score (Flash)
KEIL MDK 4.05 3.79
IAR EWARM 3.88 3.68
MCUXpresso 2.96 2.84

The following table shows the typical CoreMark score when benchmarked on Keil MDK, IAR EWARM, and MCUXpresso IDE
when running from the internal flash and SRAM when using FRO 96 MHz as the core clock resource.

Table 2. LPC55S06-EVK board CoreMark/MHz score when clock resource is FRO 96 MHz

IDE CoreMark/MHz Score (SRAMX) CoreMark/MHz Score (Flash)
KEIL MDK 4.02 2.53
IAR EWARM 3.89 2.64
MCUXpresso 2.96 2.25

The following table shows the typical CoreMark score when benchmarked on Keil MDK, IAR EWARM, and MCUXpresso IDE
when running from the internal flash and SRAM when using PLL 96 MHz as the core clock resource.
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Table 3. LPC55S06-EVK board CoreMark/MHz score when clock resource is PLL 96 MHz
IDE CoreMark/MHz Score (SRAMX) CoreMark/MHz Score (Flash)
KEIL MDK 4.02 2.53
IAR EWARM 3.89 2.64
MCUXpresso 2.96 2.25
For yA/MHz, the following tables show typical results when running on the LPC55S06-EVK board with VDD = 3.3 V at
room temperature.
NOTE
The current data on the EVK may be little higher or lower than the datasheet, because the EVK has more
components that may cost more power.
Table 4. Keil MDK pA/MHz score
Frequency Avg. Power HA/MHz Score (SRAM Avg. Power pA/MHz Score (Flash)
Consumption (mA, X) Consumption (mA,
SRAM X) Flash)
FRO 12 MHz 1.01 84.20 1.18 98.34
FRO 96 MHz 3.07 32.00 3.35 34.90
PLL 96 MHz 3.34 34.80 3.58 37.30
Table 5. IAR EWARM pA/MHz score
Frequency Avg. Power Consumption | pJA/MHz Score (SRAM Avg. Power MA/MHz Score (Flash)
(mA, SRAM X) X) Consumption (mA,
Flash)
FRO 12 MHz 1.06 88.34 1.14 95.00
FRO 96 MHz 2,84 29.59 3.07 31.98
PLL 96 MHz 3.14 32.71 3.37 35.11
Table 6. MCUXpresso yA/MHz score
Frequency Avg. Power Consumption | pA/MHz Score (SRAM Avg. Power HMA/MHz Score (Flash)
(mA, SRAM X) X) Consumption (mA,
Flash)
FRO 12 MHz 1.09 90.84 1.16 96.67
FRO 96 MHz 2.98 31.05 3.22 33.55
PLL 96 MHz 3.24 33.75 3.52 36.67
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5 Conclusion

In this application note, three types of CoreMark benchmarking on the LPC55S0x/LPC550x are presented with different IDEs (Keil,
IAR, MCUXpresso): the CoreMark score, power consumption, and the pA/MHz . It also describes how to optimize the benchmark
results when running the benchmark out of internal SRAM and flash.

The CoreMark results are measured on LPC55S06-EVK. The best CoreMark number is 4.06, achieved by using KEIL MDK (Arm
Compiler 6.12) and running CoreMark from SRAM X. The best CoreMark power consumption in yJA/MHz is 29.59, achieved by
running CoreMark from SRAM when the core frequency is FRO 96 MHz.

6 Reference

1. CoreMark Benchmarking for ARM Cortex Processors

2. LPC5411x CoreMark Cortex-M4 Porting Guide (document AN11811)
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