AN13035
LPC55(S)0x CoreMark Porting Guide

Rev. 0 — 30 October 2020 Application Note
. Contents
1 Introduction 1 Introduction..........ccceeeeeiieceenseceennnns 1
CoreMark, developed by EEMBC, is a simple, yet sophisticated benchmark 2 Integration of CoreMark library to

i . e . . SDK 2.8 framework...........ccoererereinn 1

that is designed specifically to test the functionality of an embedded processor ! : :

X : : 21 Porting CoreMark library into

core. Running CoreMark produces a single-number score allowing users to CoreMark framework 2

make quick comparisons between processors. 29 Optimizing the CoreMark
LPC55S0x/LPC550x is an Arm Cortex-M33 based microcontroller for framework.........coooovviinnii, 13
embedded applications. These devices include: 3 Measuring CoreMark on board..... 19
3.1 LPC55S06Xpresso board.......... 19
» Up to 96 KB of on-chip SRAM, up to 256 KB on-chip flash 3.2 Board setup........ccccceeeeeeirinnenn. 19
. 3.3 Running CoreMark code............ 22
Running at a frequency of up to 96 MHz 4 Result........ccoeeeeieee e 24
» PRINCE module for on-the-fly flash encryption/decryption 5 Conclusion...........cccceenimeinicennninns 27
6 Reference..........cccovveeeinniiviiennnnn, 27

* CASPER Crypto/FFT engine

* One CAN-FD with dedicated DMA controller

» Five general-purpose timers, one SCTimer/PWM, one RTC/alarm timer
* One 24-bit Multi-Rate Timer (MRT)

* A Windowed Watchdog Timer (WWDT)

» Nine flexible serial communication peripherals (which can be configured as a USART, SPI, high speed SPI, 12C, or I12S
interface)

* Programmable Logic Unit (PLU)
* One 16-bit 2.0 Msamples/sec ADC, comparator, and temperature sensor

The Cortex-M33 offers 18.2% performance increase in the same process technology compared to the high embedded
performance bars already established by Cortex-M4 processors, while improving power efficiency. Cortex-M33 official CoreMark
is 4.02 CoreMark/MHz, and Cortex-M4 official CoreMark is 3.40 CoreMark/MHz.

This application note describes how to port CoreMark code to LPC55S0x/LPC550x, which involves setting up software and
hardware including memory partitioning, compiler setting, and board setup. It also describes how to measure CoreMark scores
on the Cortex-M33 and the result including CoreMark scores and power consumption in yJA/MHz. Separate CoreMark projects for
different software development tools (Keil MDK, IAR EWARM, and MCUXpresso IDE) are also included here for reference.

2 Integration of CoreMark library to SDK 2.8 framework

The software package associated with this application note contains SDK 2.8 based project framework that allows developers to
drop in the CoreMark library sources and quickly get up and running with benchmarking the LPC55S0x/LPC550x. To get started,
go to: https://www.eembc.org/coremark. Click the "Download" link as shown in the following figure and follow the instructions on
that page.

h
P

https://www.eembc.org/coremark

NXP Semiconductors

Integration of CoreMark library to SDK 2.8 framework

C & hips//www.eembcorg/coremark &
Bc EMBEDDED MICROPROCESSCR
BENCHMARK CONSORTIUM

Member & Licensee Request Members Licensees + Benchmarks Newsletter Press Library » About

CoreMark®

An EEMBC Benchmark

Abaout - FACE Download gecores - Submit Score - Google Group

About

EEMBC's CoreMark® is a benchmark that measures the performance of microcontrollers (MCUs) and central processing units (CPUs) used in embedded

Figure 1. EEMBC CoreMark download link

After reviewing the license terms, look through the readme and documentation file. The readme gives step by step instructions on
unpacking and building the distribution. This also helps with getting familiar with the CoreMark terminology used throughout the
application note.

2.1 Porting CoreMark library into CoreMark framework

There are four variants of CoreMark projects in this application note for each IDE. The four variants execute the CoreMark
application from internal flash and other variants execute the CoreMark application from internal SRAMX.

The various CoreMark projects are:
1. coremark_score_on_flash — executes CoreMark application from internal Flash.
2. coremark_score_on_sramx — executes CoreMark application from internal RAM.
3. coremark_uAMHz_on_flash — measures current when Coremark is executed on Flash.
4. coremark_uAMHz_on_sramx — measures current when Coremark is executed on RAM.
The CoreMark projects are found in the following locations:
« Keil MDK IDE:
Ipc55s0x_coremark_mdk\ Ipc55s0x_coremark_mdk.uvprojx
* IAR Workbench IDE:
Ipc55s0x_coremark_iar\ Ipc55s0x_coremark_iar.eww
Each of execute settings has three frequency settings : 12 MHz (FRO), 48 MHz (FRO), and 96 MHz (FRO).
Depending on the toolchain, the workspace should look like as shown in the figures in the following sections. The CoreMark
framework requires the addition of the CoreMark files from EEMBC.
2.1.1 Coremark framework for Keil MDK/IAR EWARM/MCUXpresso IDE

The Ipc55s0x_coremark_xxx project must be set as active before the CoreMark source code files can be added.

LPC55(S)0x CoreMark Porting Guide, Rev. 0, 30 October 2020
Application Note 2/28

NXP Semiconductors

Integration of CoreMark library to SDK 2.8 framework

coremark_Score_on_sramx

E c? \LPC5551x\5. Templates\CoreMark\lpc55s1x_coremark_mdk\pc55s1x_coremark_mdk\lp
File Edit View Projet Flash Debug Peripherals Tools SVCS Window Help

NE - ﬁ\ 2 @l Lo mp | 8 s o | o= i= s s | B aane

$ ''''''''''''' é ~ S ‘ l ‘ coremark_Score_on flast. .‘;\ ‘ ﬁ E_'J I. ‘? ﬁ
Project) x | coremark Score on flash I

Figure 3. IAR EWARM workspace

=% Project: Ipc55s1x_ | coremark_uAMHz_on_flash be mefory block for use.
=l a9 coremark_Sco coremark UAMEHz O S ——time fhe benchmark.
&5 board e , testing the wvalidity of ths
79
= CM_SIS 80 Arguments:
L device 81 1 - first seed : Any value
#-Ld doc 82 2 - second seed : Must be identical to first £
= - = 2P - rhird coad Anir rralmna ehmrnnlA ha ar Taase
Figure 2. Keil MDK CoreMark project configuration select
° Ipc55s1x_coremark_iar - IAR Embedded Workbench IDE - Arm 8.40.2
File Edit View Project CMSIS-DAP Tools Window Help
N E@ = A0 OC £ Q> 5
m - ! ! core_portme.c X
coremark_score_on_flash v
coremark_score_on_flash — #endif
coremark_score_on_srams
coremark_udMHz_on_flash .
—| #1fdef RUN ON RAMX
ctc-lernark usMHz_on_sramx ¢ - = ,
T oo /* Re-allicate inter:
B CMSIS memcpy ((uint32 t*)0xZ
W device SCB->VTOR = (uint32_t
s TS I /+ Power Down the Fle
M libs ~ #endif
=) M source - B

LPC55(S)0x CoreMark Porting Guide, Rev. 0, 30 October 2020

Application Note

3/28

NXP Semiconductors

Integration of CoreMark library to SDK 2.8 framework

. Ipc55s1x_coremark_mcux - Ipc55s1
File Edit MNavigate Search Project
Hinlh g [® > & v & 2

& Project ... % % Periphe... i Registe
=1
~ % Ipc55s1x_coremark_mcux <lpe5t
© Project Settings
Binaries
@ Includes
= CMSIS
& board
2 device
& drivers
libs
& source
& startup
&= Ipc5551x_coremark_score_on.
& |pc55s1x_coremark_score_on,
& Ipc55s1x_coremark uAMHz ¢
= |pc55s1x_coremark_ uAMHz ¢
v = doc
E readme.txt

<

U Quickstart Panel & - Variables

5 MCUXpresso IDE - Qu

*= Project: Ipc55s1x_coremark_mect
~ Create or import a project

B ey project...
7l B | port SDK examolels).

B E

Fs
New

Go Into
Open in New Window
Show in Local Terminal

Copy
Paste

Delete
Source
Move...
Rename...
Import...
Export...
Build Project
Clean Project
Refresh
Close Project

Close Unrelated Project

Build Configurations
Build Targets

Index

Run As

Debug As

Profile As

Restore from Local History...
Launch Configurations
Utilities

SDK Management
Tools

Figure 4. MCUXpresso project configuration select

Ctrl+C
Ctrl+V
Delete

>

F2

F5

E
Help
P!@'!.ﬁ!ﬁl%‘%#‘ﬁVQVEQ«:" B nig v v o
= " =8 mw
1oTal score Average score
» 12MHz 32.582311 2.715 here i I
, 96MHz 203.603787 2.128 There is
, 168MHz 212.096575 2.120 no active
» 158MHz 260.002889 1.733 editor
» 12MHz 33.893709 2.824 that
» 96MHz 271.782214 2.839 provides
s 1@eMHz 283.032219 2.830 an
s 15@MHz 424 .588385 2.830 outline.
consumption data :
Total Current Average Current

s 12MHz 1.12mA 93.33uA/MHz
s 96MHz 3.28mA 33.40uA/MHz
5 18eMHz 3.60mA 36.08uA/MHz
5 156MHz 4.90mA 32.78uA/MHz
s 12MHz 0.97mA 80.90uA/MHz
. 96MHz 2.B5mA 29.78uA/MHz

Set Active . 1 Ipc55s1x_coremark_score_on_flash (build)

Manage... 2 Ipch5s1x_coremark_score_on_sramx

i 3 Ipch5s1 k_ UAMH:; flash

Build Al pc55s1x_coremark_u. z_on_flas o =

Clean All 4 Ipc55s1x_coremark uAMHz_on_sramx

Build Selected... { -

g

Copy the following files from the CoreMark package downloaded from EEMBC.

» core_list_join.c
* core_main.c

* core_matrix.c
» core_state.c

» core_util.c

* coremark.h

LPC55(S)0x CoreMark Porting Guide, Rev. 0, 30 October 2020

Application Note

4/28

NXP Semiconductors

Integration of CoreMark library to SDK 2.8 framework

= barebones 2018/9/28 1717 File folder
2. cygwin 2018/9/28 17:17 File folder
=2 docs 2018/9/28 1717 File folder
2. linux 2018/9/28 17:17 File folder
2 linux6d 2018/9/28 1717 File folder
2. simple 2018/9/28 17:17 File folder
& core_list_join.c 2018/5/31 10:42 C File

= core_main.c 2018/5/31 10:42 C

= core_matrix.c 2018/5/31 10:42 C

= core_state.c 2018/5/31 10:42 C File

=1 core_util.c 2018/5/31 10:42 C File

= coremark.h 2018/5/31 10:42 C Header Source F..

@ LICENSE.md 2018/5/31 10:42 Markdown Source ... 19 KB
2 | Makefile 2018/5/31 10:42 File 4 KB
@ README.md 2018/5/31 10:42 Markdown Source ... 19 KB

Figure 5. CoreMark files

» For Keil MDK, place these files in the project directory:

1pc55s0x_coremark mdk\source

» For IAR Embedded Workbench, place these files in the project directory:

1pc55s0x coremark iar\source

» For MCUXpresso place these files in the project directory

1pc55s0x_coremark mcux\source
The files ee_printf.c, core portme.c,and core portme.h (underthe port 1pc5500 folder) need to be copied to the following
folder locations.
* For Keil IDE, place the files in 1pc55s0x_coremark mdk\source\port 1lpc5500.
Add the files into the Keil MDK project framework to the respective group source by double-clicking on the groups.
» For IAR Embedded workbench, place the files in 1pc55s0x coremark iar\source\port 1pc5500.
Add the files into the IAR project framework to the respective group source by double-clicking on the groups.
* For MCUXpresso, place the files in 1pc55s0x_coremark mcux\source\port 1pc5500.

Add the files into the MCUXpresso project framework to the respective group source by clicking "refresh".

LPC55(S)0x CoreMark Porting Guide, Rev. 0, 30 October 2020
Application Note 5/28

NXP Semiconductors

Integration of CoreMark library to SDK 2.8 framework

E C:\MagicoeSync\Product_NXP\LPC5551\5. Templates\CoreMark\lpc55s1x_coremark_mdk\lpc55s1x_coremark_mdk.uvprojx - Bision — O X
gicoeSy p p p proj
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
NSd@ 4 @ [= | ®pm = JE | @ cane JRe a-le o & B A
S E B et ‘ Ls“in‘ coremark_Score_on_flast v ‘l:\‘ AT S O&
Project L x | %] core_main.c - X
@ L device ﬂ 92 | $else ~
@ 3 doc | s | - r -
3 di
G- drivers Share View ~ o
B 5 source
@ %) core.listjoin.c « CoreMark » lpe55s1x_coremark_mdk > source v U Search source r
&) coremain.c ~
. CoreMark 2 Name Date modified Type
%] core_matrix.c
&) core_state.c I Desktop docs 2/6/2020 1:01 PM File folder
4] core_util.c Ipc55s1x_corem: port Ipc5500 2/6/2020 1:01 PM File folder
Q) coremarkch & OneDrive) core_list join 4/24/2019 6:34 PM CFile
&) core portme.c) core_main 11/8/2019 5:21 PM CFile
L) core portmeh > 3 core_matrix 9/18/2018 3:58 PM CFile
] intf.. - .
& “j :‘_—lpl’_': < ot o B 3D Objects) core_state 5/31/2018 10:42 AM CFile
enl_li OWer_disable_s
43 k 'I_I'b_p _I'b N I Desktop -Jj core_util 5/31/2018 10:42 AM CFile
p eil_lib_power.lil
@63 startup P Documents. &) coremark 8/25/2018 4:23 AM H File
— 3 Downloads = LICENSE 5/31/2018 10:42 AM Markdown File
| | v~ D Music [Makefile 5/31/2018 10:42 AM File .,
M@sma {} Funet...| 0y Templ. < & pich * README 5/31/2018 10:42 AM Markdown File >
ictures
Build Output H\lideos _‘! |
I & 5 0SDisk (C3)
] Build Output mFmd In Files . RAMDisk (K) ol S
11 amme p==| = UM
Figure 6. Adding files in Keil MDK
For KEIL MDK project, right-click the source folder and select "Add", and then select "Add Files...".
° Ipe55s1x_coremark _iar - IAR Embedded Workbench IDE - Arm 8.40.2
File Edit View Project CMSIS-DAP Tools Window Help
DoR@ = XK ODC < Q>%=2< P >[O0 B@-=0 > idh
Workspace w O X | core_portme.c X
coremark_score_on_flash &
Aif
: ~
Files o & . - | source o O v
B drivers
libs Home Share View v o
[—t1 M sourcs o &« v « CoreMark » Ipc55s1x_coremark_jar > source v U Search source p
[core_list_join.c
o] c::ure_man'!_: CoreMark ol Name Date modified Type
[2) core_matrix.c ———
[core_partme.c e esktop docs 2/6/2020 5:16 PM File folder
B care_porime.h Ipc55s1x_coreme port Ipc5500 2/6/2020 6:33 PM File folder
core_state.c L] - i
() core_ufil.c @ OneDrive & core_list_join 4/24/2019 6:34 PM C File
}— [coremark.h)| core_main 11/8/2019 5:21 PM C File
B ee_printt.c ») core_matrix 9/18/2018 3:58 PM C File
+ - .
=g;’;‘£ T | 83D Objects) core_state 2/6/2020 6:35 PM C File
- I Desktop -47 core_util 5/31/2018 10:42 AM C File
Al
Ipc55s1x_coremark_iar < Documents) coremark 8/25/2018 4:23 AM H File
I ~ % Downloads = LICENSE 5/31/2018 10:42 AM Markdown File =
9= _ » Music [Makefile 5/31/2018 10:42 AM File |
Log B Pict = README 5/31/2018 10:42 AM Markdown File
ctures
ton Feb 10, 2020 13:05:07: |AR Embedded Wa)
ton Feb 10, 2020 13:05:07: Loading the CMSIS & videos
& 7 0SDisk (C)
= RAMDisk (K2) v < >
11 items =
Figure 7. Adding files in IAR EWARM workspace

LPC55(S)0x CoreMark Porting Guide, Rev. 0, 30 October 2020

Application Note

6/28

NXP Semiconductors

Integration of CoreMark library to SDK 2.8 framework

For IAR Embedded workbench right click the source folder and select "Add", and then select "Add Files...".

.:i::':':" _coremark_mcux - Ipc55s1x_coremark_mcux/doc/readme.txt - MCUXpresso IDE
File Edit Navigate Search Project Configlools Run Analysis FreeRTOS Window Help
i~ [® >] v @ BielrrEree SR blEasdkSse B LIkttt 0O~ Qvi®y ! - Bl v % o & o
& Project ... % % Periphe.. % Registers #Faults ~ & = readmedtxt T8 T B fyWelcome
= @~ v 4 Lonaitions 1otal score Average >core N
= board 411. Running on Flash, 12MHz 32.582311 2.715 . @
oar £99 Piimmiem am Elaak AfML~ an> casvos A 1aa There is
& device ; — | eource
™ < | source O
& drivers
= libs Home Share View o
v 2 source « v « Ipc55s1x_coremark_meux > source v U | Search source »p
@ docs .
& port_Ipc5500 CoreMark ~ Name Date modified Type
[@ core_list_join.c
5 core J B Desktop docs 2/7/2020 10:35 AM File folder
core-main.c Ipc55s1x_coreme »
[@ core_matrix.c p = port_Ipc5500 2/7/2020 10:35 AM File folder n
[@ core_state.c @ OneDrive o) core_list_join 4/24/2019 6:34 PM C File
[@ core_util.c] core_main 11/8/2019 5:21 PM C File
15 coremark.h - <] core_matrix 9/18/2018 3:58 PM C File :g
g semihost_hardfault.c B 3D Objects J) core_state 2/6/2020 6:35 PM CFile K
= ;CiNEIE'md I Desktop J) core_util 5/31/2018 10:42 AM C File DI
L& Makefile i ~
% README.md 5 Documents <] coremark 8/25/2018 4:23 AM H File I
P 1 & Downloads * LICENSE 5/31/2018 10:42 AM Markdown File e
< > .
J) Music || Makefile 5/31/2018 10:42 AM File c
5 Oui I Breakpo =8 E
© Quickstart Panel & - Va Breakpo - “ README 5/31/2018 10:42 AM Markdown File 1
&= Pictures - C
~ +) semihost_hardfault 2/6/2020 6:55 PM C File fi
MCUXpresso IDE - Quickstart Pan B videos ‘
== Project: Ipc55s1x%_coremark_mecux [Ipc55s1x_core £ 7 OSDisk (C) 1
~ Create or import a project - RAMDisk (K:) v ¢ > '
— : New project... 12 items :T—Jz
Figure 8. Adding files in MCUXpresso workspace

For MCUXpresso project, copy the files into the "source" folder, and then click "refresh”. The files will be added in the

project automatically.

Use the core portme.c and core portme.h files provided with the application note and not the one from the EEMBC CoreMark

package. For convenience, these files have the required porting changes ready for use.

Copy these files to the source folder for all three tool chains and add the core portme.c file in the project framework under the

source group.
A few files need to be modified to support CoreMark and are described below.

In the project scatter file, change the stack size to 0x1000.

0x1000;
0x1000;

define symbol size cstack =
define symbol size heap =

To add the path to the header files used in the project, in Keil MDK under Project -> Options -> C/C++(ACB6), click "Include path”

and add the following paths that contain the header files.

LPC55(S)0x CoreMark Porting Guide, Rev. 0, 30 October 2020

Application Note

7/28

NXP Semiconductors

Integration of CoreMark library to SDK 2.8 framework

| B Options for Target ‘coremark_Score_on_flash

|
| Device | Target | Output | Listing | User C/C++(ACE) | Asm | Linker | Debug | Lkities |
| Preprg [older Setup < Lk
| Del| Setup Compiler Include Paths: B[X|+| €
| Undel[board
J[cusis

MSI
| ngudevice
| | Exeldoc

drivers ;EI
(=]

| Optimi: VI'S'C

B o
{ | om

[" on

- E
| M
| Contr

| Com 2
e | ok | coce | .

Figure 9. Keil MDK compiler include path

In IAR under Project -> Options-> C/C++ Compiler, click "Preprocessor" and add the following paths that contain the header files.

LPC55(S)0x CoreMark Porting Guide, Rev. 0, 30 October 2020
Application Note 8/28

NXP Semiconductors

Integration of CoreMark library to SDK 2.8 framework

Options for node “lpc55s1x_coremark_iar X
Category: Factom Settings
General Options _ I Multi-file Compilation
Static Analysis Discard Unused Publics
Runtime Checking

C/C++ Compiler MISRA-C:1998 Encodings Extra Options
Assembler Language 1 Language 2 Code Optimizations Output
Output Converter List Preprocessor Diagnostics MISRA-C:2004
Custom Build
Build Actions [_] Ignore standard include directories
Linker Additional include directories: (one per line)
Debugger
: $PROJ_DIR$/CMSIS A
Simulator $PROJ_DIR$/device
CADI $PROJ_DIR$/drivers
CMSIS DAP ertetistertt b it S e
GDB Server | |$PROJ_DIRS\source\port_Ipc5500 v
I-jet Preinclude file:
J-Link/J-Trace |
TI Stellaris
Nu-Link Defined symbols: (one per line) _
PE micro DEBUG [] Preprocessor output to file
ST-LINK CPU_LPC55S16JBD100 Preserve comments
. . RUN_ON_FLASH - iracti
Third-Party Driver —N_ Generate #line directives
COREMARK_SCORE_TEST
TI MSP-FET — —
TI XDS

]9 Cancel

Figure 10. IAR EWARM compiler include paths

The CoreMark files are successfully ported into the CoreMark project framework.

In MCUXpresso under Properties for xxxx -> C/C++ Build -> Settings, click "Includes" and add the following paths that contain the

header files.

LPC55(S)0x CoreMark Porting Guide, Rev. 0, 30 October 2020

Application Note

NXP Semiconductors

Integration of CoreMark library to SDK 2.8 framework

l . Properties for lpc55s1x_coremark_mcux X

1

1 type filter text Settings e T
isource ~ |
iilders

‘C++ Build Configuration: |lpc55s1x_coremark_score_on_flash [Active] ~ || Manage Configurations...

Build Variables

Environment

Logging

MCU settings

Settings

Tool Chain Editor
'C++ General
CUXpresso Config To
oject Natures
oject References
in/Debug Settings
sk Tags
ilidation

® Tool Settings .# Build steps Build Artifact & Binary Parsers © Error Parsers

~ ® MCU C Compiler lncladomathe 1)

(2 Dialect

"${workspace_loc;/${ProjName}/source/port_lpc5500}"

“¢I\-Ma 1 -I¢IW WISk

(2 Preprocessor
2 Includes
 Optimization
& Debugging

"${workspace_loc:/${ProjName)/source}”
"${workspace_loc/${ProjName}/}"

"${workspace_loc;/${ProjName}/drivers}”
"${workspace_loc/${ProjName}/device}"

& Warnings "${workspace_loc;/${ProjName}/CMSIS}"

(2 Miscellaneous

2 Architecture

& TrustZone
~ & MCU Assembler

(2 General

(& Architecture & Headers
~ B MCU Linker

aa 85k

2 General 5 .
&= Include files (-include)

AR = RNy

2 Libraries

& Miscellaneous

(% Shared Library Settings
& Architecture

2 Managed Linker Script
2 Multicore

& Truct7nna

Figure 11. MCUXpresso compiler include paths

The CoreMark files are successfully ported into the CoreMark project framework.

2.1.2 CoreMark framework to execute from internal SRAM

The project Ipc55s0x_coremark_xxx_on_sramx executes the CoreMark application from the 16 KB SRAMX memory region.

The files core list join.c, core main.c, core matrix.c, core state.c, and core util.c are relocated to execute from
SRAMX using the linker scripts.

For Keil MDK, the linker script is located at:

.\1pc55s0x_coremark mdk\LPC55S06_coremark score_sramx.scf

The following figure shows the linker script setting for the Ipc55s0x_coremark_xxx_on_sramx project.

LPC55(S)0x CoreMark Porting Guide, Rev. 0, 30 October 2020

Application Note

10/28

NXP Semiconductors

Integration of CoreMark library to SDK 2.8 framework

Device | Target | Output | Listing

E Options for Target 'coremark_Score_on_flash

| User | C/Cro ACH)| Aam Liker | Debug | Uttis|

[~ Dont Search Standard Libraries
[V Report ‘might fail' Conditions as Emors

I [~ Use Memory Layout from Target Dialog I ¥/0 Base: I
[~ Make RW Sections Position Independent R/O Base: I{h{)ﬁm{){m
[~ Make RO Sections Posttion Independent - Imm

X

disable Wamings: [6314

Scatte [\[PC55516_coremark_score_flash scf =) Ea. |

Misc Omax —info sizes

-map —cpu=Cortex-M33 -fpu=FPv5-SP

Linker |-cpu=Cortex-M33

control |-library_type=microlib ~diag_suppress 6314 -strict —scatter " \LPC55516_coremark_score_flash scf"

-scatter "./RTE/Device/LPC55516JBD100/LPC55516_flash.scf" “.0 A

W

OK Cancel Defaults Help |

Figure 12. Linker script in Keil IDE

For IAR EWARM IDE to execute CoreMark in Internal SRAM, to place Coremark operation codes into RAM section, add the
following line of code in the . ict file, as shown in the following figure.

LPC55(S)0x CoreMark Porting Guide, Rev. 0, 30 October 2020

Application Note

11/28

NXP Semiconductors

Integration of CoreMark library to SDK 2.8 framework

initialize by copy [readwrite, section .textrw };
do not initialize | section .noinit };

if (isdefinedsymbol{ USE_DLIE PERTHREAD))

{
/* Bequired in a multi-threaded applicaticn */

initialize by copy with packing = none [section _ |

}

DLIB_FERTHREERD }1:

place at address mem: m interrupts_start { readonly secticn .intwvec };
place in TEXT_ region { readonly };

place in DATR regicn { block BW }:

place in DATR region { block ZI };

place in DATR regicn { last block HEAF };

place in XCODE_region section .critical code };

initialize by copy section .critical code };

place in XCODE_region object core portme.o,
cbject core_main.o,
object core_liat_join.o,
cbject core matrix.o,
object core state.o,
cbject core_util.o,

b
initialize by copy { cbject
object
cbject
object
cbject
object
}:

core portme.o,
coOre_main.o,
core_list join.o,
core_matrix.o,
core_state.g,
core_util.o,

Figure 13. IAR EWARM allocating Code to SRAM area

For MCUXpresso to execute CoreMark in Internal SRAM, selecte the linker file as "LPC55S06_coremark_score_sramx.ld" in
"Managed Linker script", as shown in the following figure.

LPC55(S)0x CoreMark Porting Guide, Rev. 0, 30 October 2020

Application Note

12/28

NXP Semiconductors

Integration of CoreMark library to SDK 2.8 framework

type filter text Settings vy v

{ Resource

Builders

| v ¢/C++ Build Configuration: Ipc55s1x_coremark_score_on sramx [Active] | Manage Configurations...

i Build Variables
Environment
Logging
MCU settings v ® MCU C Compiler [[]Manage linker script

% Tool Settings # Build steps " Build Artifact [= Binary Parsers @ Error Parsers

Settings £ Dialect Linker seript ||pc5551x_coremark_mcux_| pc55s1x_coremark_score_on_sramx.ld ‘
Tool Chain Edi & Preprocessor
C/C++ General 2% Includes
MCUXpresso Cor (2 Optimization
Project Natures (% Debugging Enable printf float
Project Reference: (2 Warnings Enable scanf float
{ Run/Debug Settir Miscellaneous
| Task Tags 2 Architecture
| » Validation % TrustZone
v & MCU Assembler MCUXpresso Style

Script path | ‘

Redlib (semihost-nf)

Link application to RAM
Plain load image SRAM

| % General
& Architecture & Headers
~ & MCU Linker Region Location Size
& General Heap Default Post Data 0x1000
(% Libraries Stack Default End 0x1000
& Miscellaneous
(% Shared Library Settings
£ Architecture
% Managed Linker Script

0

Global data placement Default

2 Multicore Extra linker script input sections

% TrustZone
v & MCU Debugger
| ¢ > % Debug v

| @ Apply and Close Cancel

Figure 14. MCUXpresso allocating Code to SRAM area

Input section description Region Section Type

2.2 Optimizing the CoreMark framework

There are many factors that affect the CoreMark and pA/MHz score that can be optimized. Some of these factors are IDE
dependent optimizations, while others leverage the MCU architecture for better performance. The goal is to be able to produce
the best scores from all these IDEs. It is important to understand that these IDEs are constantly changing and a different version
of a given IDE may add or remove features that may make these optimizations obsolete or ineffective. The following are the IDE
versions that are applicable to this application note:

* Keil MDK v5.28
* IAR EWARM 8.50.6
* MCUXpresso 11.2.1

2.2.1 Memory considerations

Due to the inherent architecture of SRAM and flash, CoreMark executes faster when running out of SRAM. The LPC55S0x/
LPC550x internal memory uses a multilayer AHB matrix system that provides a separate instruction and data bus for Cortex-M33
and SRAMX bank. See the following figure. SRAMO to SRAM2 are on the system bus. Placing the CoreMark code and data in
different SRAM banks minimizes bus contention and improves instruction and data parallelism.

Itis important to minimize the flash wait states according to the MCU frequency to optimize the CoreMark score. In contrast, when
performing the yA/MHz test, it is possible to save power by disabling the flash’s prefetch ability. The LPC55S0x/LPC550x user
manual contains more information on correctly configuring the flash memory, such as the minimum amount of wait states allowed
at a given core frequency.

LPC55(S)0x CoreMark Porting Guide, Rev. 0, 30 October 2020
Application Note 13/28

NXP Semiconductors

Integration of CoreMark library to SDK 2.8 framework

The provided CoreMark framework projects include separate SRAM and flash-based projects that implement various
memory optimizations.

Serial Wire JTAG CAN
Debug boundary scan interface CRYSTAL CLKIN CLKOUT VDD RST_n
A ¢ 1 T 1 |]TN\-[|
L 4 Y L ’I_tl
FPU [MPU| 25, ! Clocks, PoR
OprOCESS0r INterace wi Power control, BoD
math function : cAN | |Hash- DC-DC Converter, RO
A 8 DMAQ| [DMA1 D AES LDOs, .
Cortex-M33 2 system functions PLL
T]
[&]
Flash Flash
i - L 3 T RNCE] interface [256 kB
: i L rom
i i SRAMX
! | 16 KB
i i 16 KB SRAD
i ! 16 KB
i i SRAM3
' r Femmemmmmmm——————————— 4 16 KB
' | =
Figure 15. LPC55S0x/LPC550x AHB matrix

In both the SRAM and flash projects, there is a COREMARK sCORE_TEST macro defined in core portme.h that indicates whether
the project is configured to execute the CoreMark benchmark or the yA/MHz test. If this macro is defined, the CoreMark score test
will run. If this macro is commented out, the yA/MHz test will run. Use this macro to switch between the two benchmarks cases.

2.2.2 |DE optimization settings

The following optimizations are compiler-based and therefore IDE-dependent. These optimizations apply to both the SRAM and
flash based projects.

2.2.21 Keil optimizations

There are two compiler optimizations that can be done to improve the CoreMark score. In each Coremark source code files'
Options and under the C/C++(ACB) tab, the optimization level needs to be set to "-mcpu=Cortex-m33 --target=arm-arm-none-eabi
-Omax -g -mthumb -mfpu=fpv5-sp-d16 -mfloat-abi=hard -fno-common -ffp-mode=fast" in Misc Ctonrols.

LPC55(S)0x CoreMark Porting Guide, Rev. 0, 30 October 2020
Application Note 14/28

NXP Semiconductors

Integration of CoreMark library to SDK 2.8 framework

@08 divers 1 59 | core results results[MULTITHREADI:
5 & source B8 Optians for st Join.c
@] corelist_join.c s C/Cos (ACH) I
@) core_main.c
@ &) core matrix.c Preprocessor Symbols
@) core state.c
%) core utilc I
13 coremarkh Lot
@ &) coreportme.c /Code G .
j core_portmeh ¥ Executeonly Code Wamngs: [armeched> v| LanguageC: [etak>]
4] eeprintfc
o mfnlumr sinable shont | OPOEon: [tk +] ¥ Tum Warmings into Erors T e pr—r =
2 keil_lib, pm.]m - 7 Link-Time Optimization [Plain Char s Signed 7 Shott enums/wchar
Tuslallup- = I Spit Load and Store Muliple [7 ReadOnly Postion Independert [use RTTI
B ¥ One ELF Section per Function [Read-Wite Postion independent [No Auto Includes
b | \
Lm:* |ﬂ|q)| =Cortex-m33 -target=am-am none-eabi Omax g -mthumb mipusfpv5-3p-d16 mfloat-abishard fno | L
Compier [y sid=c93 -target abi 33 dl-ﬁﬂﬂnd&#mdc ~ ‘
cortrol |fnoti funsigned-char
| IC| sting -
project | @ Books | {) Funct...| Dy Templ
1 Output | oK Cancel Defauts Help |
Figure 16. Keil MDK CoreMark score optimization

When benchmarking the power consumption of the MCU, the optimization setting must be set to "Level 0 (-O0)" and "Optimized
for time" must be unchecked.

Device | Target | Output | Listing | User C/C++(ACE) | Asm | Linker | Debug | Lities |

Preprocessor Symbols
Define: [NDEBUG, CPU_LPC55516JBD100. COREMARK_SCORE_TEST, RUN_ON_FLASH
Undefine: |
[Execute-only Code Wamings: |ACS4ke Wamings v Language C: |c99 -
Optimization: [-00 «| I~ Tum Wamings into Emors anguage Cos: [cosll |
I Link-Time Optimization [™ Plain Charis Signed I~ Short enums /wchar
[~ Spit Load and Store Mukiple ™ Read-Only Postion Independent I useRTTI
¥ One ELF Section per Function I™ Read-Wiite Postion Independent [~ No Auto Includes
hg;f |board:source CMSIS device doc:divers src:startup: \source \port_lpc5500 J
s
Misc
Cortrols
Compiler [xc std=c39 -target: abi mcp 33 mipu=fpv5spd16 mfloat-abizhard < A
m fno-tii funsigned-char
v

0K Cancel Defaults Help !

Figure 17. Keil MDK pA/MHz optimization

2.2.2.2 1AR optimization

There are two compiler optimizations that can be done to improve the CoreMark score. Set the optimization level to “High”, select
“Speed” from the drop down menu and check the “No size constraints” checkbox.

LPC55(S)0x CoreMark Porting Guide, Rev. 0, 30 October 2020
Application Note 15/28

NXP Semiconductors

Integration of CoreMark library to SDK 2.8 framework

Options for node "coremark”

Category

General Options
Static Analysis
Runtime Cheddng

Ourtpit Convyarber
Custom Buld
Build Actions

Siruilator
CADT

CMSIS Dar
DB Server
T-jet/TTAGt
Jink/)-Trace
I Stellaris

Third-Party Driver
T MSP-FET
TI XDS

2

[Multi-fle Compilation

Digcard Unused Publics

Factory Seftings

Diagnostics | MISRA-C:2004 | MISRA-C:1998 | Encodings | Extra Options |

Level

(") None

I low

" Medium

@) High

V| Mo size constraints

Enabled transformations:

Language 1 | Language2 | Code | Opiimizations | Qutput | List | Preprocessor

[|Common subexpression elimination -

|v|Loop unrolling
|+ |Function inlining
|| Code mation

|| Type-based alias analysis

|| Static clustenng
| |Instruction scheduling
I | Vectonzation

0K

Figure 18. IAR EWARM CoreMark score optimization

When benchmarking the power consumption of the MCU, the optimization level should be set to “None”.

LPC55(S)0x CoreMark Porting Guide, Rev. 0, 30 October 2020

Application Note

16/28

NXP Semiconductors

Integration of CoreMark library to SDK 2.8 framework

-

Options for node "coremark”

=

Category:

[T Muttifile Compilation
Dizcard Unused Publics

General Options
Static Analysis

[Factory Settings I

Runtime Checking

Diagnostics | MISRA-C:2004

Aszembler
Qutput Conwverter
Custom Build
Build Actions
Linker

Debugger

Language 1

Language 2 | Code

Level
@ None

() Low

(") Medium
Simulator () High
CADI

CMSIS DAP
GDB Server
I§et/ITAGjet
Jink/1-Trace
TI Stellaris
Mu-Link

Speed -

Mo size constraints

PE micro
ST-LINK

MISRA-C:1998 | Encodings | Exira Options
Optimizations |Output | List

| Preprocessaor

nabled transformations:

|| Common subexpression elimination -
" |Loop unrolling

| |Function inlining

" |Code motion

| Type-based alias analysis
| Static clustering

" |Instruction scheduling

| Vectorization

1

Third-Party Driver
TI MSP-FET
TI¥DS

(8]:8 Cancel

|

Figure 19. IAR EWARM pA/MHz optimization

2.2.2.3 MCUXpresso optimization

There are two compiler optimizations that can be done to improve the CoreMark score.Tto set the optimization level to "-O3", select

"Optimize most(-03)" from the drop-down menu.

LPC55(S)0x CoreMark Porting Guide, Rev. 0, 30 October 2020

Application Note

171/28

NXP Semiconductors

Integration of CoreMark library to SDK 2.8 framework

. Properties for lpc55s1x_coremark_mcux O e
type filter text Settings YoV
Resource
~
Builders)) ; . .
v C/C++ Build Configuration: lpc55s1x_coremark_score_on_sramx [Active | ~ | Manage Configurations...

Build Variables

Envi t . =
nvironmen ® Tool Settings # Build steps Build Artifact k¢ Binary Parsers @ Error Parsers

Logging
MCU settings ¥ & MCU C Compiler Optimization Level Optimize most (-O3) v
CEHNHS % Dialect Other optimization flags ~fno-common
fool Chain Edi i Preprocessor [] Enable Link-time optimization (-flte)
C/C++ General # Includes)))
MCUXpresso Cor B Fat lto objects (-ffat-lto-objects)
Praject Natures i Debugging Merge Identical Constants (-fmerge-constants)
Project Reference: & Warnings Remove path from _FILE__ (-fmacro-prefix-map) |“..,"$(@D),f":.
Run/Debug Settir 2 Miscellaneous
Task Tags (2 Architecture
Validation # TrustZone
v ® MCU Assembler
& General

2 Architecture & Headers
v & MCU Linker

& General

2 Libraries

& Miscellaneous

(2 Shared Library Settings
< > 2 Architecture v

@ Apply and Close Cancel

Figure 20. MCUXpresso CoreMark score optimization

When benchmarking the power consumption of the MCU, the optimization level should be set to "None(-O0)".

LPC55(S)0x CoreMark Porting Guide, Rev. 0, 30 October 2020
Application Note 18/28

NXP Semiconductors

Measuring CoreMark on board

Build Variables

Environment

C/C++ General
MCUXpresso Cor
Project Natures
Project Reference:
Run/Debug Settir
Task Tags
Validation

®

% Tool Settings # Build steps

. Properties for Ipc55s1x_coremark_mcux] X
type filter text Settings yov.
Resource
A
Builders
v C/C++ Build Configuration: Ipc55s1x_coremark uAMHz on flash [Active] ~ 'Manage Configurations...

Build Artifact i Binary Parsers @ Error Parsers

2 Includes
2 Optimization
2 Debugging
2 Warnings
Miscellaneous
& Architecture
(& TrustZone
v @ MCU Assembler
£ General
2 Architecture & Headers
v & MCU Linker
& General
2 Libraries

Miscellaneous

Logging

MCU settings v & MCU C Compiler Optimization Level None (-00) ~
. i

S SLITEE & Dialect Other optimization flags -fno-common

Tool Chain Edi # Preprocessor

[Enable Link-time optimization (-flto)
Fat lto objects (-ffat-lto-objects)
Merge Identical Constants (-fmerge-constants)

Remove path from _FILE_ (-fmacro-prefix-map) |"../${@D)/":.

Apply and Close

Cancel

Figure 21. MCUXpresso JA/MHz optimization

3 Measuring CoreMark on board

3.1 LPC55S06Xpresso board

The LPC55S06Xpresso board supports a VCOM serial port connection through J1. To observe debug messages from the board,
set the terminal program to the appropriate COM port and use the setting ‘115200-8-N-1-none’. To make the debug messages
easier to read, set the new line receive setting to auto.

3.2 Board setup
The LPC55S06-EVK Rev. A1 development board is used for benchmarking.

LPC55(S)0x CoreMark Porting Guide, Rev. 0, 30 October 2020

Application Note 19/28

NXP Semiconductors

Measuring CoreMark on board

o IWWN) o

s

. ‘
n)
»yy
'SV"-—i.,. M . LPC55506-EvK
t“"‘w:! ’ LPCXpl’cssoSSSOG

uu:(‘lt’l' v ©2020 NXP B.v.

50

W) -

™
N -y
- e+ -lg (20N

utu:o’_u

-y
~

—_D— 310

" wo.."

W 2
v ‘1‘1"" S

o
l-"‘"‘a
ve_ile

‘

A LI

12 4
—

»137 €3 "njns yaR112

Ll
“ n“-‘ |lnu

" =82 e

8 43z iy

"[\ﬁA —‘

84 a8
|ll1ll.||l1ll||l\

FERITEIT LM

[
~

-
-

H!II!!HIII!HI

mmmmuu"

-
-
-

mnmm:.m

>

) L1 _33 f
J -
} . =[a
= - : . ‘ﬁ&i
Lo T e

OONEEm——— 3 3
B

w"wwa-a . »

C!Nr-

LN

" .
.

2
) =
S Z.\uuu‘-:

-
-
-

 28Dems wa 98D

‘;,..-,;,p;m: = R

Figure 22. LPC55S06-EVK Development Board

LPC55(S)0x CoreMark Porting Guide, Rev. 0, 30 October 2020
Application Note

NXP Semiconductors

Measuring CoreMark on board

The board ships with CMSIS-DAP debug firmware programmed. For more information on the CMSIS_DAP debug firmware, see
the following FAQs:

https://www.nxp.com/downloads/en/software/lpc_driver_setup.exe

For debugging and terminal debug messages, connect a USB cable to the P6 USB connector. Board schematics are available
on Www.nxp.com.

3.2.1 pA/MHz measurement setup
To measure the LPC55S0x/LPC550x power consumption, connect the ammeter across JP22, as shown in the following figure.
NOTE

» Users must remove the jumper on JP20, JP21, and JP22, and connect JP20/21/P22 pin2 together. Then use
multi-meter to measure the current between JP20/21/22’s pin1 to All JP20/21/22’s pin2.

» The current data on EVK maybe little higher than datasheet, because the EVK have more other components
that may cost more power.

mA

10A

MAX
1— FUSED %?E
FUSEE ¥
j rnm

Figure 23. yA/MHz measurement setup

Users can measure the current by multimeter.

LPC55(S)0x CoreMark Porting Guide, Rev. 0, 30 October 2020

Application Note 21/28

https://www.nxp.com/downloads/en/software/lpc_driver_setup.exe
http://www.nxp.com

NXP Semiconductors

Measuring CoreMark on board

When performing the pA/MHz benchmark, use a J2 USB connector to provide power to the board. Additionally, after the
WA/MHz benchmark project has been downloaded, the power cycles the board by removing the USB cable and reinserting. It is
recommended to make sure that the debug probe is not connected.

The core clock frequency can be changed by selecting different configurations through the shell terminal by MCU UARTO.

3.3 Running CoreMark code
To obtain the CoreMark result, perform the following steps:

1. Connectthe board’s connector J1 with PC. Then, the PC will recognize the LPC-Link2 debugger with a Simulate Serial Port,
as shown in the following figure.

If the PC cannot find the serial port driver, download the LPCScrypt from the following link and install it
on your PC. https://www.nxp.com/support/developer-resources/software-development-tools/Ipc-developer-resources-/
Ipc-microcontroller-utilities/Ipcscrypt-v2.0.0:LPCSCRYPT ?tab=Design_Tools_Tab

=4 Device Manager . _ = B X

File Action View Help
@ | = E HE & E RS

> -Bal Monitors ‘
4 IE¥F Network adapters

------ '_-'." Bluetooth Device (Personal Area Network) #2

------ '_-'." Bluetooth Device (RFCOMM Protocol TDI) #2

------ L¥ Intel(R) Dual Band Wireless-AC 8260

------ ¥ Intel(R) Ethernet Connection [219-LM

------ L¥ Juniper Networks Virtual Adapter Manager
------ '-_:_'; Microsoft Virtual WiFi Miniport Adapter

------ '_-'." VirtualBox Host-Only Ethernet Adapter

------ '_-'." VirtualBox Host-Only Ethernet Adapter #2
4 "% ports (COM & LPT)

------ Y% ECP Printer Port (LPT1)

------ . L o S W TaE e a el s = AlaTai s — A
| " LPC-Linkll UCom Port (COM24L) |
g ™ “rOCEss0rs

> E Proximity Devices

> g Smart card readers

> -f-:.E}‘i" Sound, video and game controllers

> -\l System devices

b - H Universal Serial Bus controllers

m

Figure 24. LPC-Linkll UCom port

2. Open a UART debug terminal (such as Tera Term, putty, etc.) and configure the settings as 115200, 8 data bits, no parity,
1 stop bit, as shown in the following figure.

LPC55(S)0x CoreMark Porting Guide, Rev. 0, 30 October 2020
Application Note 22/28

https://www.nxp.com/support/developer-resources/software-development-tools/lpc-developer-resources-/lpc-microcontroller-utilities/lpcscrypt-v2.0.0:LPCSCRYPT?tab=Design_Tools_Tab
https://www.nxp.com/support/developer-resources/software-development-tools/lpc-developer-resources-/lpc-microcontroller-utilities/lpcscrypt-v2.0.0:LPCSCRYPT?tab=Design_Tools_Tab

NXP Semiconductors

Measuring CoreMark on board

ﬁ','. Tera Term - disconnected] yT ————————————) = o o S

File Edit Setup Control Window Help

1| »

Port: COM241 A

Baud rate: 115200 -

Data: 8 bit -

Parity: ‘none A |

Stop: 1 bit -

Flow control: none -

Transmit delay

0 msecichar mseciline

Figure 25. UART debug terminal configuration

3. Once the CoreMark necessary files are added into the project (by following the instructions in Chapter 2.1), compile the
project and download it to the LPC55S06-EVK board.

4. Click the "Reset" button. The terminal displays the prompt information, as shown in the following figure. Users can input "1",
"2", or "3" from the PC keyboard to select the Core frequency like FRO 12 MHz, FRO 96 MHz, PLL 96 MHz once input a
character. The Coremark test program starts immediately. Then, wait for 10 senconds or more. The CoreMark benchmark
is displayed on the terminal after a few seconds, as shown in the following figure in Chapter 4.

LPC55(S)0x CoreMark Porting Guide, Rev. 0, 30 October 2020
Application Note 23/28

NXP Semiconductors

Result

T COM24 - Tera Term VT O >
File Edit Setup Control Window Help

LPC5550x CoreMark Test Program Start
Please Select Core Fregency first by input 1/2/3

Figure 26. Coremark Test Core Frequency Choose menu

4 Result

The following figure shows the CoreMark benchmark result when running LPC55S0x/LPC550x at 96 MHz core frequency in IAR.

The CoreMark benchmark score is the number of iterations per second. The CoreMark/MHz score executing from internal flash
for this run is 390.52/96 MHz = 4.06CoreMark/MHz.

LPC55(S)0x CoreMark Porting Guide, Rev. 0, 30 October 2020
Application Note 24 /28

NXP Semiconductors

Result

T COM24 - Tera Term VT — O >
File Edit Setup Control Window Help

3 - PLL 96MHH=z

SvustemCoreClock: 96000000

Svstem Running on SRAM-X

2K performance run parameters for coremark.

15364

15.364000

390.523301

6000

MDK v5.28 with Arm Compiler 6.12
-Omax with -LT06

Memory location . STACK

Bxe9f5
Oxe714
Ox1fd7?

seedcrc
[Blcrclist
[Blcrcmatrix
[Blcrcstate Bx8e3a

[Blcrcfinal : Bxalic

Correct operation validated. See readme.txt for run and reporting rules.

390.523301 /7 MDK v5.28 with Arm Compiler 6.12 —-Omax with -LT06 /

Test DONE, Press anvkey to start again

Figure 27. CoreMark result

The following table shows the typical CoreMark score when benchmarked on Keil MDK, IAR EWARM, and MCUXpresso IDE
when running from the internal flash and SRAM when using FRO 12 MHz as the core clock resource.

Table 1. LPC55S06-EVK board CoreMark/MHz score when using FRO 12 MHz

IDE CoreMark/MHz Score (SRAMX) CoreMark/MHz Score (Flash)
KEIL MDK 4.05 3.79
IAR EWARM 3.88 3.68
MCUXpresso 2.96 2.84

The following table shows the typical CoreMark score when benchmarked on Keil MDK, IAR EWARM, and MCUXpresso IDE
when running from the internal flash and SRAM when using FRO 96 MHz as the core clock resource.

Table 2. LPC55S06-EVK board CoreMark/MHz score when clock resource is FRO 96 MHz

IDE CoreMark/MHz Score (SRAMX) CoreMark/MHz Score (Flash)
KEIL MDK 4.02 2.53
IAR EWARM 3.89 2.64
MCUXpresso 2.96 2.25

The following table shows the typical CoreMark score when benchmarked on Keil MDK, IAR EWARM, and MCUXpresso IDE
when running from the internal flash and SRAM when using PLL 96 MHz as the core clock resource.

LPC55(S)0x CoreMark Porting Guide, Rev. 0, 30 October 2020

Application Note

25/28

NXP Semiconductors

Result
Table 3. LPC55S06-EVK board CoreMark/MHz score when clock resource is PLL 96 MHz
IDE CoreMark/MHz Score (SRAMX) CoreMark/MHz Score (Flash)
KEIL MDK 4.02 2.53
IAR EWARM 3.89 2.64
MCUXpresso 2.96 2.25
For yA/MHz, the following tables show typical results when running on the LPC55S06-EVK board with VDD = 3.3 V at
room temperature.
NOTE
The current data on the EVK may be little higher or lower than the datasheet, because the EVK has more
components that may cost more power.
Table 4. Keil MDK pA/MHz score
Frequency Avg. Power HA/MHz Score (SRAM Avg. Power pA/MHz Score (Flash)
Consumption (mA, X) Consumption (mA,
SRAM X) Flash)
FRO 12 MHz 1.01 84.20 1.18 98.34
FRO 96 MHz 3.07 32.00 3.35 34.90
PLL 96 MHz 3.34 34.80 3.58 37.30
Table 5. IAR EWARM pA/MHz score
Frequency Avg. Power Consumption | pJA/MHz Score (SRAM Avg. Power MA/MHz Score (Flash)
(mA, SRAM X) X) Consumption (mA,
Flash)
FRO 12 MHz 1.06 88.34 1.14 95.00
FRO 96 MHz 2,84 29.59 3.07 31.98
PLL 96 MHz 3.14 32.71 3.37 35.11
Table 6. MCUXpresso yA/MHz score
Frequency Avg. Power Consumption | pA/MHz Score (SRAM Avg. Power HMA/MHz Score (Flash)
(mA, SRAM X) X) Consumption (mA,
Flash)
FRO 12 MHz 1.09 90.84 1.16 96.67
FRO 96 MHz 2.98 31.05 3.22 33.55
PLL 96 MHz 3.24 33.75 3.52 36.67
LPC55(S)0x CoreMark Porting Guide, Rev. 0, 30 October 2020
Application Note 26/28

NXP Semiconductors

Conclusion

5 Conclusion

In this application note, three types of CoreMark benchmarking on the LPC55S0x/LPC550x are presented with different IDEs (Keil,
IAR, MCUXpresso): the CoreMark score, power consumption, and the pA/MHz . It also describes how to optimize the benchmark
results when running the benchmark out of internal SRAM and flash.

The CoreMark results are measured on LPC55S06-EVK. The best CoreMark number is 4.06, achieved by using KEIL MDK (Arm
Compiler 6.12) and running CoreMark from SRAM X. The best CoreMark power consumption in yJA/MHz is 29.59, achieved by
running CoreMark from SRAM when the core frequency is FRO 96 MHz.

6 Reference

1. CoreMark Benchmarking for ARM Cortex Processors

2. LPC5411x CoreMark Cortex-M4 Porting Guide (document AN11811)

3. LPC55S0x/LPC550x Data Sheet, Rev. 1.0 (document LPC55S0x/LPC550x)
4. LPC55S0x/LPC550x User Manual, Rev. 0.4 (document UM11424)

LPC55(S)0x CoreMark Porting Guide, Rev. 0, 30 October 2020
Application Note 27 /28

http://infocenter.arm.com/help/topic/com.arm.doc.dai0350a/DAI0350A_coremark_benchmarking.pdf
https://www.nxp.com/docs/en/application-note/AN11811.zip
https://www.nxp.com/docs/en/data-sheet/LPC55S0x_LPC550x_DS.pdf
https://www.nxp.com/docs/en/user-guide/UM11424.pdf

How To Reach Us
Home Page:
nxp.com

Web Support:

nxp.com/support

arm

Information in this document is provided solely to enable system and software implementers
to use NXP products. There are no express or implied copyright licenses granted hereunder
to design or fabricate any integrated circuits based on the information in this document. NXP

reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products
for any particular purpose, nor does NXP assume any liability arising out of the application

or use of any product or circuit, and specifically disclaims any and all liability, including

without limitation consequential or incidental damages. “Typical” parameters that may be
provided in NXP data sheets and/or specifications can and do vary in different applications,
and actual performance may vary over time. All operating parameters, including “typicals,”
must be validated for each customer application by customer's technical experts. NXP does
not convey any license under its patent rights nor the rights of others. NXP sells products
pursuant to standard terms and conditions of sale, which can be found at the following address:
nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC,
MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire,
ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,
PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform
in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, elQ, and Immersive3D
are trademarks of NXP B.V. All other product or service names are the property of their
respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio,
CorelLink, CoreSight, Cortex, DesignStart, DynamlQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled,
NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME,
ULINK-PLUS, ULINKpro, uVision, Versatile are trademarks or registered trademarks of Arm
Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected
by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle

and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and
Power.org word marks and the Power and Power.org logos and related marks are trademarks
and service marks licensed by Power.org.

© NXP B.V. 2020. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 30 October 2020
Document identifier: AN13035

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Integration of CoreMark library to SDK 2.8 framework
	2.1 Porting CoreMark library into CoreMark framework
	2.1.1 Coremark framework for Keil MDK/IAR EWARM/MCUXpresso IDE
	2.1.2 CoreMark framework to execute from internal SRAM

	2.2 Optimizing the CoreMark framework
	2.2.1 Memory considerations
	2.2.2 IDE optimization settings
	2.2.2.1 Keil optimizations
	2.2.2.2 IAR optimization
	2.2.2.3 MCUXpresso optimization

	3 Measuring CoreMark on board
	3.1 LPC55S06Xpresso board
	3.2 Board setup
	3.2.1 μA/MHz measurement setup

	3.3 Running CoreMark code

	4 Result
	5 Conclusion
	6 Reference

